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Projected Change in Surface Air Temperature 
Large Ens. 2080-2100 minus 1980-2000

0 4 8 12 oC

Results	
  from	
  CESM-­‐CAM5	
  Large	
  Ensemble	
  	
  (Kay	
  et	
  al.,	
  2015)	
  

• Amplified Arctic warming 
• Warming rates elevated 3-4 times above the global average 
• Largest surface air temperature change in fall/winter (>20C)  
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Simulated Surface Heat Flux Change 
SHF Change
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As in other models, the 
CESM-LE exhibits: 
• Surface heating in 
summer - increased 
net shortwave 
• Increased flux of heat 
to the atmosphere in 
fall/winter  
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  Surface	
  Heat	
  Flux	
  Change	
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What controls the surface albedo response? 
 

changes in 
ice area 

Sept	
  1979	
   Sept	
  2012	
  

3.6	
  million	
  km2	
  Extent	
  7.2	
  million	
  km2	
  Extent	
  

Largest at end of 
melt season (Sept) 
Incoming SW <50 W/m2 

CESM-­‐LE	
  
September	
  
Ice	
  Extent	
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What controls the surface albedo response? 
 

changes in albedo of ice itself 

Sept	
  1979	
   Sept	
  2012	
  

3.6	
  million	
  km2	
  Extent	
  7.2	
  million	
  km2	
  Extent	
  

changes in 
ice area 

Mostly	
  at	
  
melt	
  onset	
  
~June	
  
	
  

Incoming	
  SW	
  
>250	
  W/m2	
  

Largest at end of 
melt season (Sept) 
Incoming SW <50 W/m2 
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Factors affecting the albedo of sea ice are projected to 
change in the 20th-21st century 

CESM-­‐LE	
  SimulaXons	
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Years: 1990-2009

J F M A M J J A S O N D

-10

0

10

20

SW
 B

ud
ge

t C
ha

ng
e (

W
 m

-2
)

(a)
Change associated with:

Ice Area
Ice Albedo

Years: 2040-2059
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Years: 2060-2079
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Change	
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  to	
  ice	
  
area	
  loss	
  Change	
  due	
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ice	
  albedo	
  

1990-­‐2009	
  

• With declining ice albedo, 
more absorbed SW in ice, 
especially in June & July 

• More SW absorbed in 
ocean with reduced ice 
cover 

Arctic Surface 
Shortwave Budgets 

PosiXve	
  down	
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Years: 1990-2009
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(c)

2040-­‐2059	
  

2060-­‐2079	
  

1990-­‐2009	
  

• With declining ice albedo, 
more absorbed SW in ice, 
especially in June & July 

• More SW absorbed in 
ocean with reduced ice 
cover 

• Later in 21st century, ice 
area change dominates, but 
ice albedo change remains 
important in June at melt 
season start 

Arctic Surface 
Shortwave Budgets 
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Years: 1990-2009

J F M A M J J A S O N D

-10

0

10

20
SW

 B
ud

ge
t C

ha
ng

e (
W

 m
-2
)

(a)
Change associated with:

Ice Area
Ice Albedo
Incoming SW

Years: 2040-2059
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Change	
  due	
  to	
  ice	
  
area	
  loss	
  

2040-­‐2059	
  

2060-­‐2079	
  

1990-­‐2009	
  

Change	
  due	
  to	
  
ice	
  albedo	
  

Change	
  due	
  to	
  
incoming	
  SW	
  

Simulated Arctic 
Surface SW Budgets 

• Surface SW absorption 
increases 
•  Incoming shortwave 

radiation decreases 

Surface	
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Investigating Uncertainty in Climate 
Model Projections 

How do these factors affect across-model 
scatter in climate projections? 
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Amplification Factor: 

• Change in zonal 
average relative to 
global mean change 
• All models show 
amplified warming 
• Model scatter in 
magnitude of 
amplification is large 

Projected Change in Surface Air Temperature 
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Model Scatter in Arctic Amplification 
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Across model scatter in Arctic warming is related to 
changes in the net solar heating 
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Projected Changes in 
Solar Heating at 2050  

Change in Surface Net Shortwave Flux 
in CMIP5 models at Year 2050 

Net SW Change due to Albedo
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Net SW Change due to Albedo
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Important role of ice area change 

R=-­‐0.7	
  

• Albedo-related Solar Heating change is strongly correlated 
with change in ice concentration 
• Albedo-related Solar Heating change is strongly correlated 
with change in ice concentration 
• However, even for similar ice loss amount, the heating 
change can vary by a factor of ~3 
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For same ice area loss, change influenced by initial albedo 

For the same ice loss, the increase 
in albedo-related net solar heating 

can vary by a factor of >3 
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For the same ice area loss – 
Larger increases in net solar 
heating occur in models 
with higher initial (late 20th 
century) surface albedo 
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Late 20th century surface 
albedo influenced by: 
• Simulated surface state 
•  snow conditions 
• ponding on sea ice 

• Albedo tuning may also 
play a role 
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Conclusions 
•  Net Arctic surface heating is driven by increased 

shortwave absorption that is partly compensated by 
declining incoming solar radiation 

•  Projections of Arctic surface albedo decline include 
contributions from: 
– Reduced ice albedo 
–  Increased open water area 

•  Models have large uncertainty in their future Arctic 
change due in part to albedo projections  
– Different ice loss rates 
– Different initial surface albedo 
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Questions? 
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Across-Model Scatter in Arctic Shortwave Heating   

Change in SWNet
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R(SWDN,ALBSFC) Change
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R(SWDN,ALBSFC) Change
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Surface albedo reductions: 
•  Enhance solar absorption (enhance warming) 
•  Affect multiple surface reflections with overlying clouds and 

reduce incoming solar radiation (reduce warming) 
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Figure 3 | Intermodel spread of Arctic warming contributions of feedbacks versus total Arctic warming in individual models. Lines are linear regressions
of feedback contributions against total Arctic warming. Filled circles on the black vertical line represent the ensemble mean. The right-hand side shows the
spread of Arctic warming contributions in the analysed models. Boxes show the median, 25th and 75th percentiles, and whiskers show the full
ensemble spread.

the near-surface atmosphere warms more in the Arctic than the
tropics. Previous studies decomposing Arctic feedbacks from a
surface perspective 10 used a methodology that implicitly includes
the spatial structure of the temperature feedback and therefore
did not identify the key role of the surface temperature feedback’s
structure for Arctic amplification.

In the annual mean, cloud feedback opposes Arctic amplification
from a TOA perspective, but makes a small contribution to Arctic
amplification from a surface perspective. Within the lowest 1–2 km
of the Arctic atmosphere, cloud-top temperatures are often similar
to surface temperatures 27. Under these circumstances, low-level
clouds hardly a�ect TOA longwave fluxes because the clouds
radiate upwards at roughly the same temperature as the surface, but
increase downward longwave radiation and thus warm the surface
at the expense of the atmosphere. An increase or thickening of
such clouds in a warming climate as predicted by models hardly
a�ects cloud feedback from a TOA perspective, but causes a positive
cloud feedback at the surface. Likewise, the water vapour feedback
contributes more to summer than winter warming from a TOA
perspective, but has a stronger contribution to surface warming in
winter than in summer (not shown)22.

Besides quantifying the di�erent contributions to Arctic ampli-
fication in the ensemble mean, it is valuable to understand why
models di�er in their degree of Arctic amplification6. Our analysis
shows that intermodel spread in Arctic warming is dominated
by the spread in local feedback mechanisms, not meridional
transport changes (Fig. 3). Changes in atmospheric heat transport
dampen intermodel spread because they are more positive in
models with little Arctic warming. This is consistent with results
from an energy balance model used to reconstruct warming and
transport changes in the Coupled Model Intercomparison Project
Phase 3 (CMIP3; ref. 28). In the ensemble mean, atmospheric heat
transport does contribute to Arctic amplification by enhancing Arc-
tic and reducing tropical warming (Fig. 2a). Contrary to physical
intuition, poleward atmospheric energy transport does not scale
with themeridional temperature gradient within individual models,
but increases in most models despite a reduction in the Equator-
to-pole temperature gradient. Increasing latent energy transports
overcompensating the decrease of dry static energy transport have

been shown to cause such behaviour of climate models 18,29. Changes
in ocean transport and ocean heat uptake are not correlated with
total Arctic warming across di�erent models.

To develop confidence in model projections of future Arctic
warming, it is necessary to quantitatively understand the role of
di�erent physical mechanisms for Arctic amplification. Contrary
to a widespread assumption, temperature feedbacks are the most
important contributors to Arctic amplification in contemporary
climate models. The surface albedo feedback is the second main
contributor, whereas other suggested drivers of Arctic amplification
either play minor roles or even oppose Arctic amplification in
the ensemble mean.

Methods
Previous studies analysing the role of di�erent feedbacks for Arctic amplification
have often diagnosed feedbacks based on TOA and surface fluxes routinely included
in climate model output 9,15,26. These methods provide a precise assessment of
longwave and shortwave flux changes, but cannot quantify the temperature
changes associated to individual feedback mechanisms. Here, we use and extend
the radiative kernel technique 22 to overcome this limitation.

A radiative kernel ki is the change in TOA radiation 1Ri caused by a small
change in the climate variable xi , for example a one per cent change in surface
albedo (dxi): ki =dR/dxi . The TOA flux change caused by one feedback in a
climate change experiment can be estimated as 1Ri =ki ·1xi , where 1xi is for
instance the surface albedo change between the control and perturbed climate. We
use this established technique to compute the flux change caused by each feedback
and extend the method to convert flux changes into temperature responses
associated with each feedback.

The warming response to a TOA flux imbalance is decomposed into three
components: a global mean Planck feedback, the local deviation from the global
mean Planck feedback and the e�ect of the lapse-rate feedback, that is, deviations
from vertically uniform warming, on surface temperature change:

1T =
X

i

 
1Ri

 
dT
dR

+ dT
dR

0
+ dT

dR

LR
!!

The warming contribution, for example of the surface albedo feedback, is:

1Ta =1Ra

 
dT
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and the contribution of the Planck feedback’s deviation from its global mean is:
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X
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Model Simulations 
NH Ice Extent
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Arctic Observations 
From the SHEBA Drifting Station 

constant. Figure 8 shows the fraction of the albedo line that
was pond-covered throughout the summer. Also plotted is a
larger-scale estimate of the fraction of the ice covered by
ponds, which was determined by analyzing aerial photo-
graphs [Eicken et al., 2002; Perovich et al., 2002]. Though
the albedo line had a larger pond fraction than the general
SHEBA region, both the surface-based and aerial observa-
tions exhibited the same temporal dependence. The tempo-
ral increase in pond fraction indicates a seasonal reduction
of the areally averaged albedo [Perovich et al., 1999;
Perovich et al., 2002]. In addition, the lead fraction was
3–5% from May through July then jumped to 20% in early

August [Perovich et al., 2002]. Since the average lead
albedo was quite small, 0.066 [Pegau and Paulson,
1999], an increase in open water would reduce the overall
albedo of a region.
3.2.1. Wavelength-Integrated Albedo
[18] We examined the evolution of the albedo of the ice

cover by averaging the individual measurements along the
albedo line to derive an areally averaged albedo and a
standard deviation for each day. Although the albedo line
did not include any open water, we believe that the
evolution of the albedo line was generally representative
of the multiyear portion of the ice cover. During melt, other

Figure 9. Time series of wavelength-integrated albedo from 1 April 1998 through 27 September 1998.
Values are averaged over a 200-m-long albedo line. The arrow points to 17 April when the sky was clear.
Also plotted is the albedo measured at the beginning of the experiment in October 1997 (solid squares).
The standard deviation of albedo measured along the albedo line for each is plotted as open circles.

Figure 8. Time series of the fractional area of the ice covered by melt ponds as measured along the
albedo line and from aerial photographs.

SHE 20 - 8 PEROVICH ET AL.: SEASONAL EVOLUTION OF ARCTIC SEA ICE ALBEDO

(Perovich et al., JGR, 2002) 
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Arctic Observations 
From the SHEBA Drifting Station 
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constant. Figure 8 shows the fraction of the albedo line that
was pond-covered throughout the summer. Also plotted is a
larger-scale estimate of the fraction of the ice covered by
ponds, which was determined by analyzing aerial photo-
graphs [Eicken et al., 2002; Perovich et al., 2002]. Though
the albedo line had a larger pond fraction than the general
SHEBA region, both the surface-based and aerial observa-
tions exhibited the same temporal dependence. The tempo-
ral increase in pond fraction indicates a seasonal reduction
of the areally averaged albedo [Perovich et al., 1999;
Perovich et al., 2002]. In addition, the lead fraction was
3–5% from May through July then jumped to 20% in early

August [Perovich et al., 2002]. Since the average lead
albedo was quite small, 0.066 [Pegau and Paulson,
1999], an increase in open water would reduce the overall
albedo of a region.
3.2.1. Wavelength-Integrated Albedo
[18] We examined the evolution of the albedo of the ice

cover by averaging the individual measurements along the
albedo line to derive an areally averaged albedo and a
standard deviation for each day. Although the albedo line
did not include any open water, we believe that the
evolution of the albedo line was generally representative
of the multiyear portion of the ice cover. During melt, other

Figure 9. Time series of wavelength-integrated albedo from 1 April 1998 through 27 September 1998.
Values are averaged over a 200-m-long albedo line. The arrow points to 17 April when the sky was clear.
Also plotted is the albedo measured at the beginning of the experiment in October 1997 (solid squares).
The standard deviation of albedo measured along the albedo line for each is plotted as open circles.

Figure 8. Time series of the fractional area of the ice covered by melt ponds as measured along the
albedo line and from aerial photographs.

SHE 20 - 8 PEROVICH ET AL.: SEASONAL EVOLUTION OF ARCTIC SEA ICE ALBEDO

(Perovich et al., JGR, 2002) 
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Years: 2060-2079

J F M A M J J A S O N D
-40

-20

0

20

40

60

80

100

SW
 B

ud
ge

t C
ha

ng
e (

W
 m

-2
)

(c)

Years: 1990-2009

J F M A M J J A S O N D

-10

0

10

20
SW

 B
ud

ge
t C

ha
ng

e (
W

 m
-2
)

(a)
Change associated with:

Ice Area
Ice Albedo
Incoming SW

Years: 2040-2059

J F M A M J J A S O N D
-40

-20

0

20

40

60

80

100

SW
 B

ud
ge

t C
ha

ng
e (

W
 m

-2
)

(b)
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